Música

Effect of alkali metals on physical and spectroscopic properties of cellulose | Scientific Reports – Nature Journal


  • Aziz, T. et al. Challenges associated with cellulose composite material: Facet engineering and prospective. Environ. Res. 223, 115429 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Edit. 44(22), 3358–3393 (2005).

    CAS 

    Google Scholar
     

  • Seddiqi, H. et al. Cellulose and its derivatives: towards biomedical applications. Cellulose 28, 1893–1931 (2021).

    CAS 

    Google Scholar
     

  • Heinze, T. Cellulose: structure and properties. In Cellulose Chemistry and Properties: Fibers Nanocelluloses and Advanced Materials (ed. Rojas, O.) 1–52 (Springer, 2015).


    Google Scholar
     

  • Tayeb, A. H., Amini, E., Ghasemi, S. & Tajvidi, M. Cellulose nanomaterials—binding properties and applications: A review. Molecules 23, 2684 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hubbe, M., Rojas, O. J. & Lucia, L. Green modification of surface characteristics of cellulosic materials at the molecular or nano scale: A review. BioResources 10, 6095–6206 (2015).

    CAS 

    Google Scholar
     

  • Kalia, S. et al. Cellulose-based bio- and nanocomposites: A review. Int. J. Polym. Sci. 2011, 1–35 (2011).


    Google Scholar
     

  • Nishiyama, Y. Molecular interactions in nanocellulose assembly. Philos. Trans. A Math. Phys. Eng. Sci. 376(2112), 20170047 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Wohlert, M. et al. Cellulose and the role of hydrogen bonds: Not in charge of everything. Cellulose 29, 1–23 (2022).

    CAS 

    Google Scholar
     

  • Cherian, R. M. et al. A review on the emerging applications of nano-cellulose as advanced coatings. Carbohydr. Polym. 282, 119123 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Abu-Zurayk, R., Alnairat, N., Khalaf, A., Ibrahim, A. A. & Halaweh, G. Cellulose acetate membranes: Fouling types and antifouling strategies—A brief review. Processes 11, 489 (2023).

    CAS 

    Google Scholar
     

  • Duan, Y., Wu, J., Qi, W. & Su, R. Eco-friendly marine antifouling coating consisting of cellulose nanocrystals with bioinspired micromorphology. Carbohydr. Polym. 304, 120504 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Koh, J. J. et al. 3D-printed anti-fouling cellulose mesh for highly efficient oil/water separation applications. ACS Appl. Mater. Interfaces 11(14), 13787–13795 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Kollarigowda, R. H., Abraham, S. & Montemagno, C. D. Antifouling cellulose hybrid biomembrane for effective oil/water separation. ACS Appl. Mater. Interfaces 9(35), 29812–29819 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, W. et al. Sustainable cellulose and its derivatives for promising biomedical applications. Prog. Mater. Sci. 138, 101152 (2023).

    CAS 

    Google Scholar
     

  • Abdelhamid, H. N. & Mathew, A. P. Cellulose-based nanomaterials advance biomedicine: A review. Int. J. Mol. Sci. 23(10), 5405 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fatema, N., Ceballos, R. M. & Fan, C. Modifications of cellulose-based biomaterials for biomedical applications. Front. Bioeng. Biotechnol. 10, 993711 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasanin, M. S. Cellulose-based biomaterials: chemistry and biomedical applications. Starch – Stärke 74, 2200060 (2022).

    CAS 

    Google Scholar
     

  • Wang, Z., Ng, K., Warner, R. D., Stockmann, R. & Fang, Z. Application of cellulose- and chitosan-based edible coatings for quality and safety of deep-fried foods. Compr. Rev. Food. Sci. F. 22, 1418–1437 (2023).

    CAS 

    Google Scholar
     

  • Spagnuolo, L., D’Orsi, R. & Operamolla, A. Nanocellulose for paper and textile coating: The importance of surface chemistry. ChemPlusChem 87, e202200204 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Amoroso, L. et al. Sustainable cellulose nanofiber films from carrot pomace as sprayable coatings for food packaging applications. ACS Sustainable Chem. Eng. 10, 342–352 (2022).

    CAS 

    Google Scholar
     

  • Camargos, C. H. M., Poggi, G., Chelazzi, D., Baglioni, P. & Rezende, C. A. Protective coatings based on cellulose nanofibrils, cellulose nanocrystals, and lignin nanoparticles for the conservation of cellulosic artifacts. ACS Appl. Nano Mater. 5, 13245–13259 (2022).

    CAS 

    Google Scholar
     

  • Li, F., Biagioni, P., Bollani, M., Maccagnan, A. & Piergiovanni, L. Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20, 2491–2504 (2013).

    CAS 

    Google Scholar
     

  • Wang, X. et al. Assembly of silver nanowires and PEDOT:PSS with hydrocellulose toward highly flexible, transparent and conductivity-stable conductors. J. Chem. Eng. 392, 123644 (2020).

    CAS 

    Google Scholar
     

  • Park, G. et al. Green nanoarchitectonics for next generation electronics devices: Patterning of conductive nanowires on regenerated cellulose substrates. Cellulose 29, 2449–2460 (2022).

    CAS 

    Google Scholar
     

  • Darabi, S. et al. Green conducting cellulose yarns for machine-sewn electronic textiles. ACS Appl. Mater. Interfaces 12, 56403–56412 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, S. et al. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nanomicro. Lett. 14, 115 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. & Hu, L. Nanocellulose toward advanced energy storage devices: Structure and electrochemistry. Acc. Chem. Res. 51, 3154–3165 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Teng, C. P. et al. Advances in cellulose-based composites for energy applications. Materials 16, 3856 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyamayaro, K., Hatzikiriakos, S. G. & Mehrkhodavandi, P. Utilizing cellulose-based conducting hydrogels in iontronics. RSC Sustainability 1, 1369 (2023).

    CAS 

    Google Scholar
     

  • Zhu, M., Jia, C., Fang, Z. & Hu, L. Nanocellulose-based composites: Optoelectronic applications. In Nanocellulose (eds Yang, G. et al.) 377–405 (World Scientific, 2021).


    Google Scholar
     

  • Luo, Y., Zhang, J., Li, X., Liao, C. & Li, X. The cellulose nanofibers for optoelectronic conversion and energy storage. J. Nanomater. 2014, 654512 (2014).


    Google Scholar
     

  • Zhu, H. et al. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10, 1369–1377 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Sarwar, S. et al. Deciphering the role of alkali metals (Li, Na, K) doping for triggering nonlinear optical (NLO) properties of t-graphene quantum dots: Toward the development of giant NLO response materials. ACS Omega 7, 24396–24414 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. et al. Synthesis of alkali metals functionalized porous carbon for enhanced selective adsorption of carbon dioxide: A theoretically guided study. Energy Fuels 35, 15962–15968 (2021).

    CAS 

    Google Scholar
     

  • Dobrota, A. S. et al. Stabilization of alkali metal ions interaction with OH-functionalized graphene via clustering of OH groups—implications in charge storage applications. RSC Adv. 6, 57910–57919 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Hussain, T., Pathak, B., Maark, T. A., Ramzan, M. & Ahuja, R. Functionalization of graphane with alkali and alkaline-earth metals: An insulator-to-metallic transition. EPL 99, 47004 (2012).

    ADS 

    Google Scholar
     

  • Ibrahim, M. A. et al. Molecular modeling analyses for the effect of alkali metal oxides on graphene. Biointerface Res. Appl. Chem. 8, 3522–3525 (2018).

    CAS 

    Google Scholar
     

  • Beni, F. A. & Shahrak, M. N. Alkali metals-promoted capacity of ZIF-8 and ZIF-90 for carbon capturing: A molecular simulation study. Polyhedron 178, 114338 (2020).


    Google Scholar
     

  • Badry, R. et al. Effect of alkaline elements on the structure and electronic properties of glycine. Biointerface Res. Appl. Chem. 8, 3682–3687 (2018).

    CAS 

    Google Scholar
     

  • Badry, R. et al. Effect of Li, Na, K, Be, Mg and Ca on the electronic properties, geometrical parameters of carboxylic acids. Biointerface Res. Appl. Chem. 8, 3657–3660 (2018).

    CAS 

    Google Scholar
     

  • Badry, R., Shaban, H., Elhaes, H., Refaat, A. & Ibrahim, M. Molecular modeling analyses of polyaniline substituted with alkali and alkaline earth elements. Biointerface Res. Appl. Chem. 8, 3719–3724 (2018).

    CAS 

    Google Scholar
     

  • Yuan, X. & Xu, Y. Recent trends and applications of molecular modeling in GPCR–ligand recognition and structure-based drug design. Int. J. Mol. Sci. 19, 2105 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gubbins, K. E., Liu, Y. C., Moore, J. D. & Palmer, J. C. The role of molecular modeling in confined systems: Impact and prospects. Phys. Chem. Chem. Phys. 13, 58–85 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Tiama, T. M. et al. Molecular and biological activities of metal oxide-modified bioactive glass. Sci Rep. 13, 10637 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Safi, Z. S. & Wazzan, N. DFT calculations of 1H- and 13C-NMR chemical shifts of 3-methyl-1-phenyl-4-(phenyldiazenyl)-1H-pyrazol-5-amine in solution. Sci Rep 12, 17798 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leng, C. et al. Theoretical study of cellulose II nanocrystals with different exposed facets. Sci Rep. 11, 21871 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srivastava, D., Ahopelto, J. & Karttunen, A. J. Thermodynamic properties of crystalline cellulose allomorphs studied with dispersion-corrected density functional methods. Molecules 27, 6240 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrera-Morales, J. et al. Examining the use of nanocellulose composites for the sorption of contaminants of emerging concern: An experimental and computational study. ACS Omega. 2, 7714–7722 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janićijević, A. et al. Structural characterization of nanocellulose/Fe3O4 hybrid nanomaterials. Polymers (Basel) 14, 1819 (2022).

    PubMed 

    Google Scholar
     

  • Uto, T. & Yui, T. DFT optimization of isolated molecular chain sheet models constituting native cellulose crystal structures. ACS Omega 3, 8050–8058 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, C. et al. Adsorption behavior of cellulose and its derivatives toward Ag(I) in aqueous medium: An AFM, spectroscopic, and DFT study. Langmuir 31, 12390–12400 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Kubicki, J. D., Mohamed, M.N.-A. & Watts, H. D. Quantum mechanical modeling of the structures, energetics and spectral properties of Iα and Iβ cellulose. Cellulose 20, 9–23 (2013).

    CAS 

    Google Scholar
     

  • Frisch, M. et al. Gaussian Inc (Wallingford, CT, 2010).


    Google Scholar
     

  • Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter. 37(2), 785–789 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miehlich, B., Savin, A., Stoll, H. & Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee. Yang and Parr. Chem. Phys. Lett. 157(3), 200–206 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • O’Boyle, N. M., Tenderholt, A. L. & Langner, K. M. cclib: A library for package-independent computational chemistry algorithms. J. Comp. Chem. 29, 839–845 (2008).


    Google Scholar
     

  • Nielsen, A. B. & Holder, A. J. GaussView 5.0 User’s Reference (GAUSSIAN Inc., 2009).


    Google Scholar
     

  • Sun, Q., Dereka, B., Vauthey, E., Daku, L. M. L. & Hauser, A. Ultrafast transient IR spectroscopy and DFT calculations of ruthenium(II) polypyridyl complexes. Chem. Sci. 8, 223–230 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Cichosz, S., Masek, A. & Dems-Rudnicka, K. Original study on mathematical models for analysis of cellulose water content from absorbance/wavenumber shifts in ATR FT-IR spectrum. Sci Rep 12, 19739 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barsberg, S. Prediction of vibrational spectra of polysaccharides-simulated ir spectrum of cellulose based on density functional theory (DFT). J. Phys. Chem. B 114, 11703–11708 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Adeleye, O. A. et al. Characterizations of alpha-cellulose and microcrystalline cellulose isolated from cocoa pod husk as a potential pharmaceutical excipient. Materials. 15, 5992 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, M. et al. Synthesis mechanism of carbon microsphere from waste office paper via hydrothermal method. BioResources 17, 5568–5577 (2022).

    CAS 

    Google Scholar
     

  • Miller, D. D., Smith, M. W. & Shekhawat, D. Microwave-induced selective decomposition of cellulose: Computational and experimental mechanistic study. J. Phys. Chem. Solids. 150, 109858 (2021).

    CAS 

    Google Scholar
     

  • Lekha, P. et al. Effect of mechanical treatment on properties of cellulose nanofibrils produced from bleached hardwood and softwood pulps. Maderas. Ciencia y tecnología 18, 457–466 (2016).

    CAS 

    Google Scholar
     

  • Gea, S. et al. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Bioresour. Technol. 102, 9105–9110 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, M. et al. Cross-flow deposited hydroxyethyl cellulose (HEC)/polypropylene (PP) thin-film composite membrane for aqueous and non-aqueous nanofiltration. Chemical Engineering Research and Design 153, 572–581 (2020).

    CAS 

    Google Scholar
     

  • Wang, W. et al. Structure and properties of novel regenerated cellulose fibers prepared in NaOH complex solution. Carbohyd. Polym. 98, 1031–1038 (2013).

    CAS 

    Google Scholar
     

  • Shari, S. et al. Subsolidus solution and ionic conductivity of rock-salt structured Li3+5xTa1−xO4 electroceramics. Mater. Sci-Poland. 38(3), 465–474 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Parker, S. F., Revill-Hivet, E. J., Nye, D. W. & Gutmann, M. J. Structure and vibrational spectroscopy of lithium and potassium methanesulfonates. R. Soc. Open Sci. 7, 200776 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, N., Hua, C., Wang, Z. & Chen, L. Reversible reduction of Li2CO3. J. Mater. Chem. A. 3, 14173–14177 (2015).

    CAS 

    Google Scholar
     

  • Halizan, M. Z. M., Mohamed, Z. & Yahya, A. K. Understanding the structural, optical, and dielectric characteristics of SrLaLiTe1−xMnxO6 perovskites. Sci. Rep. 11, 9744 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elkhoshkhany, N. et al. Investigation of structural and luminescence properties of borosilicate glass doped with Dy2O3. Results Phys. 27, 104544 (2021).


    Google Scholar
     

  • Gao, E. et al. Unraveling the promotional effects of K-doping on the mobility of surface oxygen species of CoCr2O4 for improved formaldehyde catalytic oxidation: The weakened metal-oxygen bond strength. Chem. Eng. J. 474, 145618 (2023).

    CAS 

    Google Scholar
     

  • Bagheri, M. & Komsa, H.-P. High-throughput computation of Raman spectra from first principles. Sci. Data 10, 80 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kou, Z., Hashemi, A., Puska, M. J., Krasheninnikov, A. V. & Komsa, H.-P. Simulating Raman spectra by combining first-principles and empirical potential approaches with application to defective MoS2. npj Comput. Mater. 6, 59 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Makarem, M. et al. Probing cellulose structures with vibrational spectroscopy. Cellulose. 26, 35–79 (2019).

    CAS 

    Google Scholar
     

  • Wiley, J. H. & Atalla, R. H. Band assignments in the raman spectra of celluloses. Carbohyd. Res. 160, 113–129 (1987).

    CAS 

    Google Scholar
     

  • Lee, C. M., Mohamed, N. M. A., Watts, H. D., Kubicki, J. D. & Kim, S. H. Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J. Phys. Chem. B 117, 6681–6692 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, U. P., Ralph, S. A., Baez, C. & Reiner, R. S. Detection and quantitation of cellulose II by Raman Spectroscopy. Cellulose 28, 9069–9079 (2021).

    CAS 

    Google Scholar
     

  • Wan, F. et al. Charge transfer effect on Raman and surface enhanced Raman spectroscopy of furfural molecules. Nanomaterials 7, 210 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, D., Popp, J. & Singh, R. Fourier transform Raman and DFT study of blue shift C–H stretching vibration of diazines on hydrogen bond formation. Zeitschrift für Physikalische Chemie 225, 785–798 (2011).

    CAS 

    Google Scholar
     

  • Hong, Z. & Asher, S. A. Dependence of Raman and resonance Raman intensities on sample self-absorption. Appl. Spectrosc. 69, 75–83 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ourhzif, E., Ketatni, E., Akssira, M., Troin, Y. & Khouili, M. Crystal structure, Hirshfeld surface analysis and DFT studies of Euphorbioside monohydrate a major bisnorsesquiterpene isolated from Euphorbia resinifera latex. J. Mol. Struct. 1241, 130511 (2021).

    CAS 

    Google Scholar
     

  • Tiama, T. M. et al. Molecular and biological activities of metal oxide-modified bioactive glass. Sci. Rep. 13, 10637 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durka, K., Kamiński, R., Luliński, S., Serwatowski, J. & Woźniak, K. On the nature of the BN interaction and the conformational flexibility of arylboronic azaesters. Phys. Chem. Chem. Phys. 12, 13126–13136 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Ezzat, H. A. et al. DFT and QSAR studies of PTFE/ZnO/SiO2 nanocomposite. Sci. Rep. 13, 9696 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lefi, N., Kazachenko, A. S., Raja, M., Issaoui, N. & Kazachenko, A. S. Molecular structure, spectral analysis, molecular docking and physicochemical studies of 3-bromo-2-hydroxypyridine monomer and dimer as bromodomain inhibitors. Molecules 28, 2669 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Marc Valldeperez

    Soy el administrador de marcahora.xyz y también un redactor deportivo. Apasionado por el deporte y su historia. Fanático de todas las disciplinas, especialmente el fútbol, el boxeo y las MMA. Encargado de escribir previas de muchos deportes, como boxeo, fútbol, NBA, deportes de motor y otros.

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button